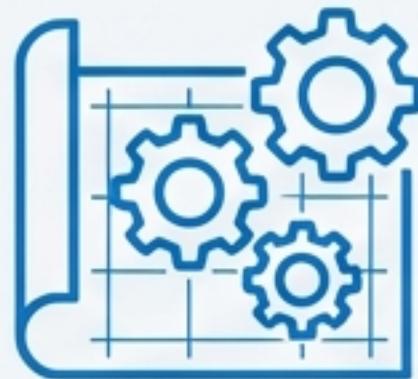


An Architectural Blueprint for Enterprise-Scale Digital Workspaces


A Strategic Guide to Designing, Securing, and Optimizing Azure Virtual Desktop and Windows 365

Cloud Experts

The Modern Enterprise Mandate: Balancing Control vs. Simplicity

The modern enterprise requires a shift toward **secure, scalable digital workspaces** to support a **distributed workforce**. Microsoft's DaaS offerings, **Azure Virtual Desktop (AVD)** and **Windows 365 (W365)**, are the core solutions.

Control (AVD)

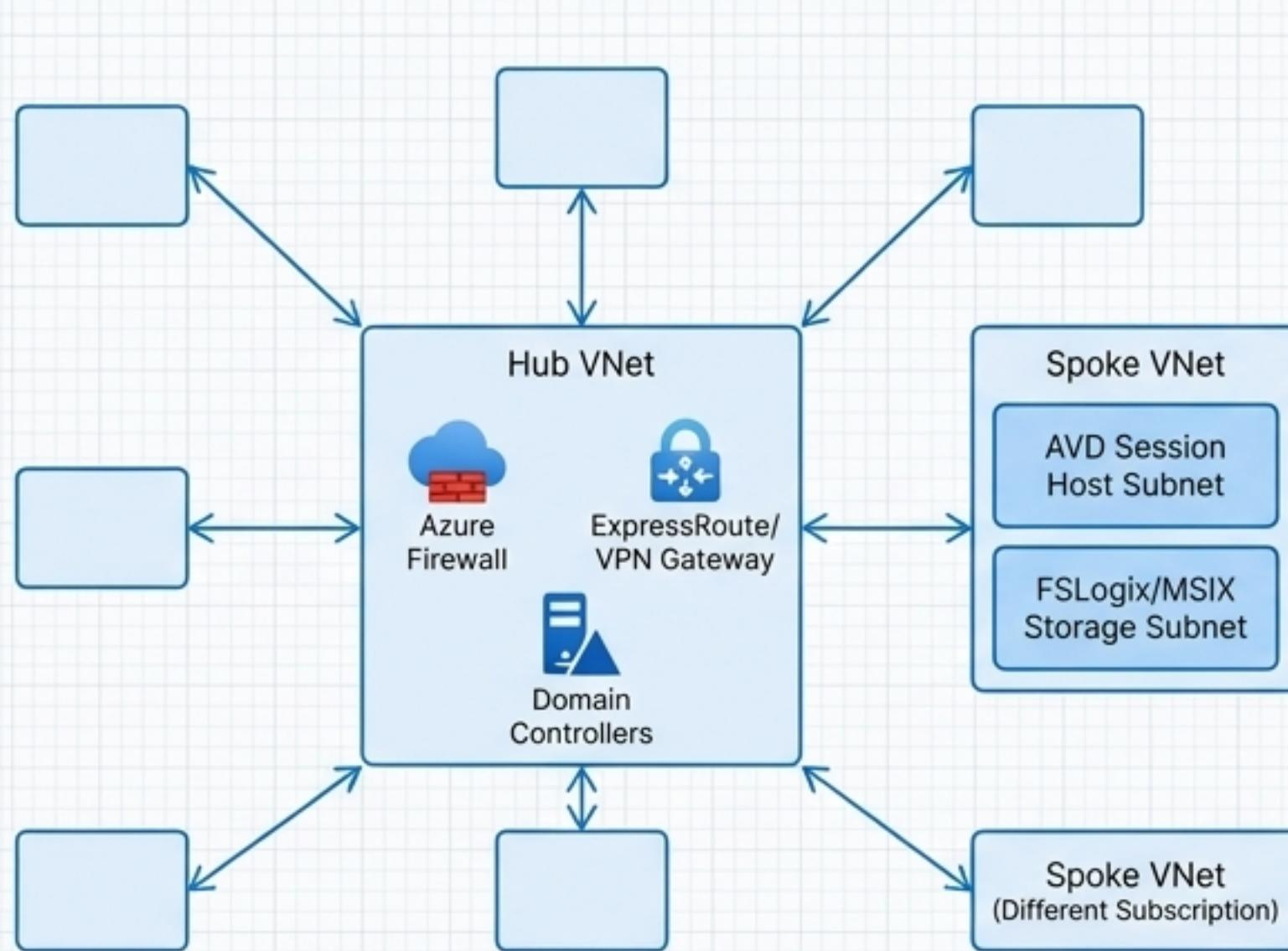
A Platform as a Service (PaaS) model offering granular control over every architectural component. Ideal for customization, high-density environments, and cost optimization.

Simplicity (W365)

A Software as a Service (SaaS) model offering predictable costs and operational simplicity, abstracting away infrastructure management.

Architect's Recommendation

The most effective strategy is a **Hybrid DaaS Portfolio**. A single model cannot optimally serve all user types. Leverage AVD for cost-optimized pooled groups and **W365** for roles requiring rapid onboarding or fixed, predictable costs.


Cloud Experts

The Decision Matrix: AVD (PaaS) vs. W365 (SaaS)

Comparative Architectural Model: AVD vs. Windows 365 Enterprise

Feature/Dimension	Azure Virtual Desktop (AVD)	Windows 365 Enterprise (W365)
Underlying Model	Platform as a Service (PaaS)	Software as a Service (SaaS)
Resource Sharing	Multi-session (Windows Enterprise EVD, Windows Server) & Single-session (Personal) supported.	Dedicated Single-session (Cloud PC) running Windows 10/11 Enterprise.
Management Complexity	High. Customer manages OS, VM size, scaling, network, and identity via Azure Portal.	Low. Microsoft manages underlying infrastructure; customer manages users and policies via Microsoft Intune.
Cost Driver	Consumption-based. Billed for VM runtime, storage, networking. Optimized by auto-scaling and Reserved Instances.	Predictable. Per-user, per-month fixed subscription cost.
Primary Use Case	Highly customized apps, high-density user pools, legacy OS support, cost-sensitive scaling, specialized workloads (dev/test, GPU).	Standardized desktops, rapid onboarding (contractors, seasonal staff), BYOD scenarios, and fixed budget predictability.

Foundational Architecture: The Hub-and-Spoke Topology

- **Hub VNet:** The central point for hybrid connectivity and security governance. All shared services reside here.
- **Spoke VNets:** Isolate AVD workloads. Peer with the hub to access shared services and on-premises resources.
- **Scalability:** The architecture scales horizontally by adding more Spoke VNets, even across different Azure subscriptions, connected via VNet peering.

This design adheres to the Azure Cloud Adoption Framework (CAF) for centralization, security, and efficient hybrid connectivity.

Securing Connectivity and Optimizing Latency

1. Centralized Threat Management with Azure Firewall

- **Function:** Deployed in the Hub VNet to control all north-south and east-west traffic.
- **Architect's Recommendation:** Use User-Defined Routes (UDRs) to force-tunnel all session host internet egress traffic through the Azure Firewall for comprehensive threat detection, logging, and policy enforcement.
- **High Availability:** Must be deployed across multiple availability zones for resilience.

2. Performance Optimization with RDP Shortpath

Goal: Establish a direct, low-latency UDP-based transport to bypass the AVD Gateway, significantly improving connection reliability for latency-sensitive applications.

Implementation Modes:

- **Managed Networks:** Direct UDP connection over private links (ExpressRoute/VPN).
- **Public Networks:** Utilizes STUN/TURN services for NAT traversal. Requires outbound UDP connectivity to STUN/TURN servers (port 3478).

Security Consideration: RDP Shortpath requires direct client-to-host UDP connectivity. Firewalls must be meticulously configured to allow this traffic without creating unintended attack vectors.

Identity Architecture: The Strategic Shift to Cloud-Native

All AVD user identities must be discoverable through Microsoft Entra ID. Pure on-premises AD DS identities are not supported.

Hybrid Identity (Legacy Approach)

Session hosts are joined to AD DS and synced to Microsoft Entra ID.

Critical Prerequisite: User Principal Name (UPN) or Security Identifier (SID) must match between AD DS and Entra ID to avoid errors.

Security Risk: Maintains dependencies on legacy protocols like Kerberos or NTLM, which pose a **significant security risk**.

Cloud-Only Identity (Recommended)

Session hosts are Microsoft Entra Joined.

Identities are managed directly in Microsoft Entra ID.

Architectural Advantage: Eliminates on-premises dependencies and enables the immediate use of stronger, modern authentication protocols (SSO, passwordless).

The digital workspace deployment is a pivotal opportunity to drive the enterprise toward a more secure, fully cloud-native identity model. Any design retaining hybrid identity must be justified against the potential security exposure.

Implementing Zero Trust: Conditional Access, Endpoint Security, and DLP

1. Strong Authentication & Access Control

- Enforce **Microsoft Entra multifactor authentication (MFA)** for all AVD/W365 access using Conditional Access policies.
- Implement **Single Sign-On (SSO)** with Microsoft Entra authentication for a seamless and secure user experience.
- Adopt **passwordless authentication** using Windows Hello for Business or FIDO2 keys.

2. Endpoint Protection & Device Compliance

- Onboard all session hosts and Cloud PCs to **Microsoft Defender for Endpoint**.
- Use **Intune compliance policies** to set a security baseline (e.g., Secure Boot).
- Configure Conditional Access to block access from non-compliant devices based on the risk score reported by Defender.

3. Data Loss Prevention (DLP)

- Enable **Microsoft Purview Endpoint DLP** to prevent data exfiltration from the virtual session.
- **Key Controls:** Configure DLP policies to block copying sensitive data to local devices, restrict printing to unauthorized printers, and control access to removable media.

Standardized Image Management with Azure VM Image Builder

The Challenge

In large-scale AVD deployments, maintaining consistent, secure, and up-to-date session host images ('gold images') is a significant operational burden.

The Solution: Azure VM Image Builder (AIB)

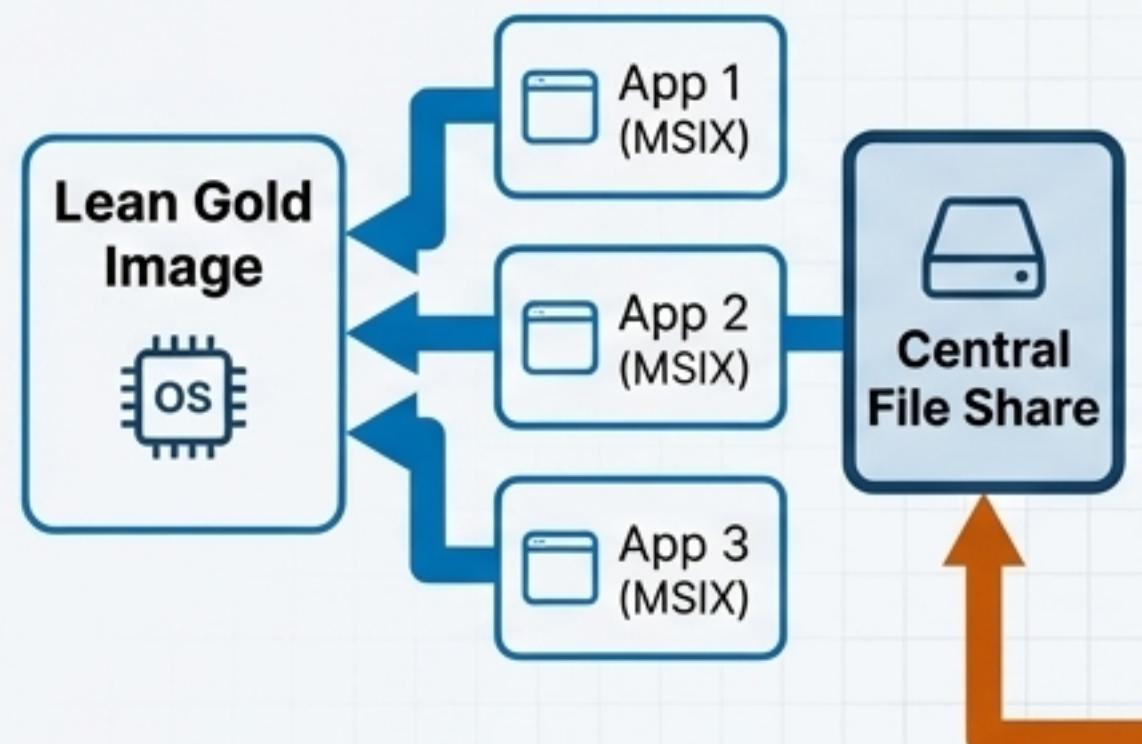
- A managed Azure service, built on HashiCorp Packer, that automates the creation of standardized Windows VM images.
- Ensures security baselines, OS updates, and core applications are consistently applied to every build.
- Streamlines the image lifecycle from creation to distribution in the Azure Compute Gallery.

Architect's Recommendation (Security)

The image building process must be secured. Store build credentials and secrets in Azure Key Vault and access them via the build VM's managed identity. Never embed secrets directly in customizer scripts.

Dynamic Application Delivery with MSIX App Attach

MSIX App Attach fundamentally modernizes application delivery by decoupling applications and their state from the underlying operating system. Applications are packaged and mounted dynamically at user login.


Before and After: Application Delivery Models

Traditional Model

Everything is bundled in a single image.

MSIX App Attach Model

Applications are mounted dynamically from central storage.

Key Operational Benefits

- Reduced Image Sprawl:** Applications are managed independently of the gold OS image, dramatically reducing the administrative effort of patching and updating multiple images.
- Improved Performance:** Mounting applications as virtual disks (VHDX/CimFS) keeps the session host OS lean, reducing the OS footprint and accelerating **user logon** times by up to 40%.

Critical Dependency Callout

Dynamic application delivery means that MSIX App Attach volumes are stored centrally and mounted over the network. This makes application launch speed and runtime performance **highly dependent on the latency and IOPS of the shared storage platform**.

High-Performance Storage Architecture for FSLogix and MSIX

The performance of FSLogix Profile Containers and MSIX App Attach is directly tied to the underlying storage. Selecting the correct storage tier is critical for user experience, especially during peak load events like login storms.

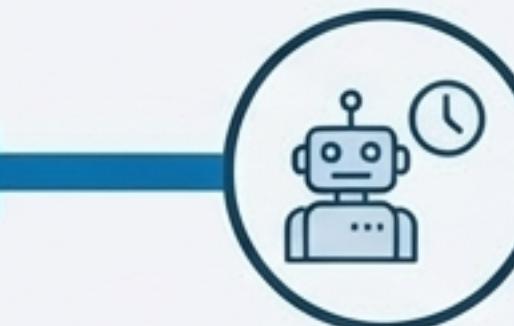
Storage Tier Decision Framework

Storage Solution	Azure Files Premium (SMB)	Azure NetApp Files (ANF) (NFS/SMB)
Performance Profile	Single-digit millisecond latency (2-3ms for small IO). Optimized for general random access workloads.	Sub-millisecond latency (<1ms for random IO). Engineered for the most demanding, high-performance workloads.
Max IOPS/Throughput	Up to 100k IOPS / 10 GiB/s per share.	Up to 450k IOPS / 12.5 GiB/s per volume.
Redundancy	LRS, ZRS.	Built-in local HA, Cross-region/zone replication.
Architect's Recommendation	Standard Users: Reliable, fully managed choice for standard office workers with moderate and predictable I/O demands.	Power Users & High Density: The required choice for users with IO-intensive applications, large profiles, or in environments prone to extreme load spikes (login storms).

Validating Performance: From Reactive Metrics to Proactive UX Testing

1. Reactive Infrastructure Monitoring (Azure Native Tools)

Azure Virtual Desktop Insights provides essential dashboards built on Log Analytics.


- Monitors the health of host pools, session hosts (CPU/memory), user connections (RTT), and storage.
- Crucial for diagnosing existing problems.

Infrastructure Metrics
(CPU, RAM)

Unified Performance Dashboard

User Experience Metrics
(Login Time, App Response)

2. Proactive User Experience Validation (Login Enterprise)

Login Enterprise by Login VSI.

Goes beyond infrastructure metrics by deploying synthetic virtual users that continuously execute real business workflows (e.g., opening an ERP, processing a record).

- **Key Output:** Generates a single, objective End-User Experience **(EUX) Score** and detailed application timings.
- **Benefit:** Proactively detects performance degradations, application failures, or login slowdowns before real users are impacted, allowing for validation of changes and benchmarking against historical data.

Mastering FinOps: Eliminating Waste with Intelligent Auto-Scaling

The #1 Challenge

Unchecked cloud spend is a top enterprise concern. In AVD, the greatest source of financial waste is **idle session hosts** running 24/7 and oversized VMs.

Cloud Experts

The Solution: Policy-Driven Auto-Scaling

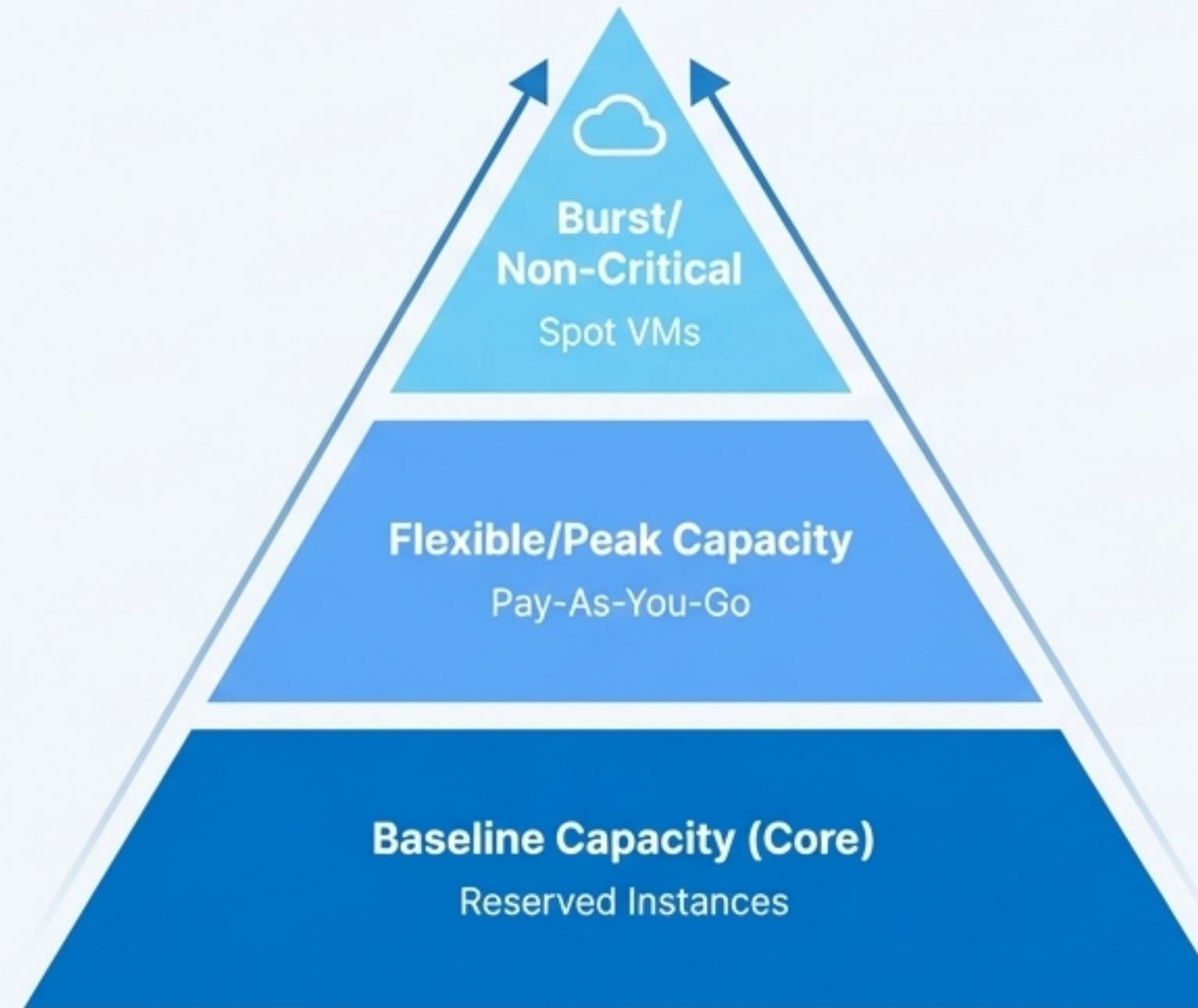
📈 Dynamically manage capacity to align resources with actual user demand.

➡ Key Actions:

- Automatically **start** VMs before business hours (ramp-up).
- Scale **out** to add capacity during peak hours.
- Scale **in** and **stop** VMs during off-hours, weekends, and holidays to prevent wasted spend.

Tools for Implementation

💻 **Native:** Azure Virtual Desktop Scaling Plans offer schedule-based scaling.


⚙️ **Advanced Automation:** Tools like **Hydra by Login VSI** provide a powerful management layer for both AVD and W365, enabling more flexible, real-time demand-based scaling and simplified management.

“

“Running AVD around the clock drains budgets fast. ... Hydra eliminates the guesswork with automated, flexible scaling policies – so you only pay for what you need, when you need it.” – **Login VSI**

Advanced Procurement: A Layered Strategy for AVD Compute

Optimal cost efficiency is achieved by layering procurement models to match different capacity needs.

The Layered Model

Capacity Layer	Procurement Model	Recommended Allocation	FinOps Justification
Baseline Capacity (Core)	1 or 3-Year Azure Reserved Instances (RI)	Minimum number of hosts required to support peak daily concurrency.	Provides the deepest discounts (up to 72%) on predictable, 24/7 workloads.
Flexible/Peak Capacity	Standard Pay-As-You-Go (PAYG) VMs	Capacity needed to scale out during business hours. Managed by auto-scaling policies.	Provides guaranteed uptime and flexibility to scale resources up and down rapidly.
Burst/Non-Critical Capacity	Azure Spot VMs	Interruptible workloads like dev/test environments or extra capacity for non-critical user pools.	Offers the highest discounts (up to 90%) on unused Azure capacity.

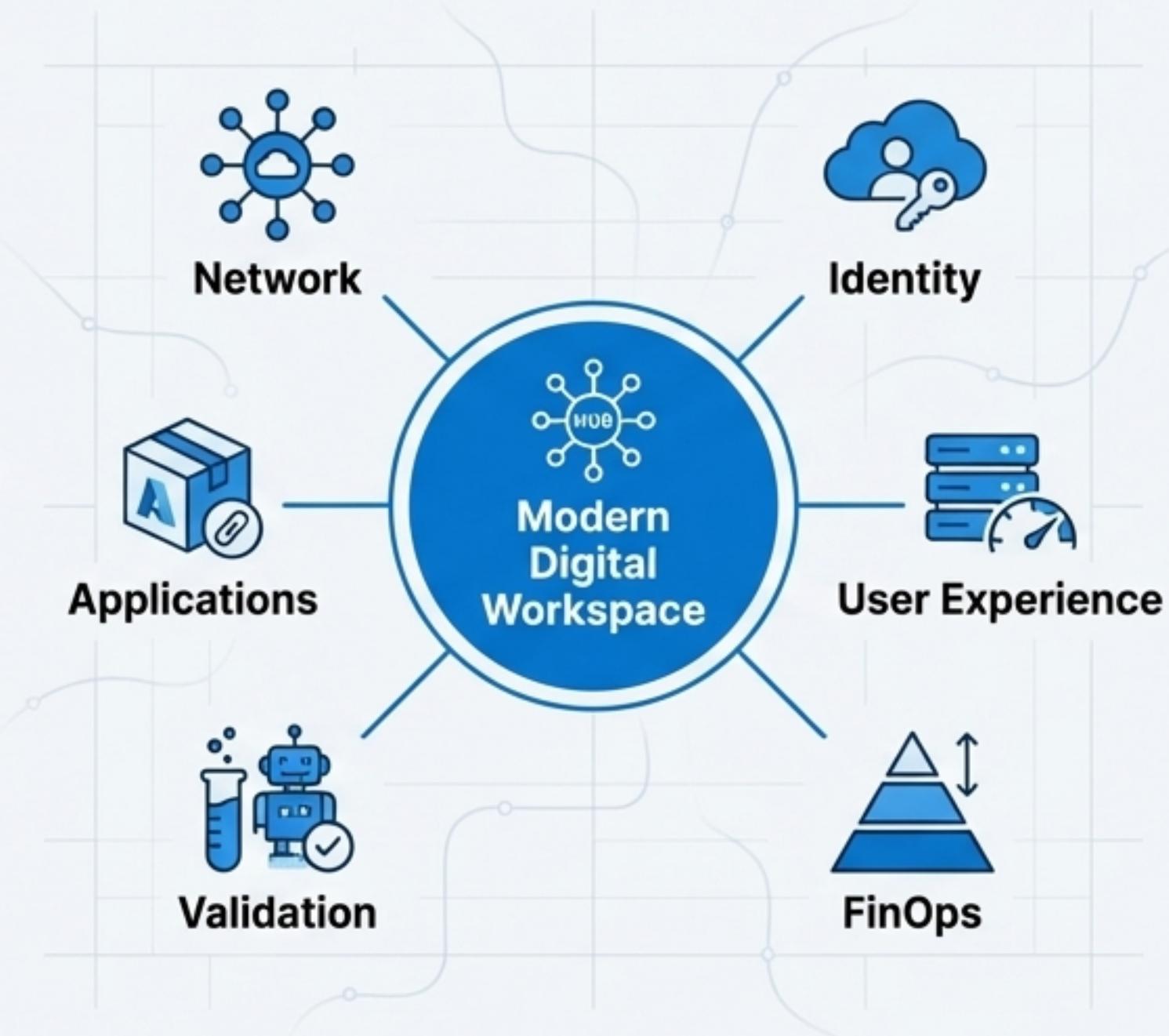
Architect's Recommendation

When using Azure Spot VMs in a scale set, the eviction policy **must be set to 'Delete'**. The default "Deallocate" policy retains the underlying disks, leading to orphaned disk costs and potential quota issues when VMs are evicted.

The Blueprint for a Modern Digital Workspace

A successful enterprise deployment is a **Hybrid DaaS Portfolio**, balancing the control and cost-efficiency of AVD with the simplicity and predictability of W365.

- **Foundational Network:**


A secure **Hub-and-Spoke Topology** with centralized threat management via Azure Firewall.

- **Agile Application Delivery:**

Decouple applications from the OS with **MSIX App Attach** to reduce image management overhead.

- **Proactive Validation:**

Move beyond reactive metrics with synthetic user testing (**Login Enterprise**) to guarantee end-user experience.

- **Modern Identity:**

A shift to **Cloud-Native (Microsoft Entra Joined)** identity, secured with MFA and passwordless Conditional Access policies.

- **Optimized User Experience:**

Underpin FSLogix and MSIX with **High-Performance Storage** (Azure Files Premium or Azure NetApp Files) and enable **RDP Shortpath**.

- **Disciplined FinOps:**

Eliminate waste through intelligent **Auto-Scaling** and a layered procurement strategy of **RI, PAYG, and Spot VMs**.

Cloud Experts