

Azure Migrate
Roadmap
Migrating and Modernizing Legacy Applications
to the Microsoft Cloud

Executive Summary

Modernizing legacy infrastructure—such as Windows Server 2008 R2, SQL Server
2008, and monolithic .NET Framework 4.5 applications—is now essential for enterprise
survival, as organizations face mounting risks from end-of-support security
vulnerabilities, limited integration with modern analytics, and rising on-premises
maintenance costs.

Migrating these workloads to Microsoft Azure enables a shift from capital-intensive,
maintenance-heavy operations to an agile, service-oriented model.

This report provides a practical strategy and roadmap for such migrations, adapting the
Microsoft Cloud Adoption Framework (CAF) to the specific challenges of legacy
environments, where the approach must carefully balance immediate stabilization with
long-term modernization goals.

Strategic Implementation Roadmap and Technical Architecture for Migrating Legacy
Applications to Microsoft Azure...3
Strategic Framework and Business Justification...4

The Cloud Adoption Framework (CAF) as a Governance Model.. 4
Rationalizing the Digital Estate: The 6 Rs of Migration..4
Financial Strategy: The FinOps Imperative... 5

Discovery and Assessment: Illuminating the Legacy Estate..6
The Azure Migrate Ecosystem...6
Dependency Visualization and Service Mapping...7
Database Assessment with DMA.. 7

Architectural Design: The Azure Landing Zone... 7
Network Topology: Hub-and-Spoke... 8
Hybrid Connectivity: The Case for ExpressRoute... 8
Identity Management Strategy...9

Migration Strategy: Compute and Infrastructure..9
The Rehost Workflow (Lift and Shift)... 9
Handling Legacy OS Nuances (Windows Server 2008 R2).. 10
Optimizing Latency: Proximity Placement Groups...10

Migration Strategy: Database Modernization..11
The Target: Azure SQL Managed Instance (SQL MI).. 11
The Migration Mechanism: Database Migration Service (DMS).. 11
Ensuring Compatibility: The "100" Level..12

Migration Strategy: Application Modernization (.NET).. 12
Assessing for PaaS Readiness... 12
Remediation Patterns.. 13
Decoupling Session State..13

Governance and Operational Excellence..13
Monitoring: The Transition to Azure Monitor Agent (AMA).. 14
Patch Management: Azure Update Manager.. 14
Policy-Driven Governance... 14

Implementation Roadmap and Timeline..15
Phase 1: Foundation and Discovery (Weeks 1-6)... 15
Phase 2: Pilot Migration (Weeks 7-10).. 15
Phase 3: Core Migration Waves (Months 3-9)...16
Phase 4: Optimization and Modernization (Months 10+)...16

Conclusion... 16

AzureCloud.pro | Page 2

https://azurecloud.pro/

Strategic Implementation Roadmap and
Technical Architecture for Migrating
Legacy Applications to Microsoft Azure
In the contemporary enterprise landscape, the modernization of legacy infrastructure is
no longer a discretionary optimization but a fundamental imperative for survival.

Organizations operating on aging platforms—specifically Windows Server 2008 R2,
SQL Server 2008, and monolithic.NET Framework 4.5 applications—face a converging
storm of risks: the cessation of security support, the inability to integrate with modern
data analytics, and the escalating costs of maintaining on-premises data centers.

The migration of these workloads to Microsoft Azure represents a pivotal
transformation, shifting the IT operating model from a capital-intensive,
maintenance-heavy posture to an agile, service-oriented architecture.

This comprehensive research report outlines a rigorous implementation strategy and
roadmap for migrating legacy applications to Microsoft Azure. Unlike greenfield
development, legacy migration requires a nuanced approach that balances the need for
immediate stabilization against the desire for modernization. The strategy articulated
herein is grounded in the Microsoft Cloud Adoption Framework (CAF), adapting its
prescriptive phases to the unique constraints of legacy environments.

The roadmap prioritizes a "Stabilize, Then Modernize" approach. The immediate phase
focuses on the secure evacuation of on-premises data centers using Rehost (Lift and
Shift) and Replatform (Managed Database) strategies to mitigate End-of-Support (EOS)
risks through Azure-hosted Extended Security Updates (ESU). Subsequent phases
leverage this stabilized cloud footing to execute deeper modernization, refactoring
monolithic codebases into Azure App Services and decoupling rigid architectures using
cloud-native patterns.

Key strategic outcomes targeted by this roadmap include:

●​ Security Hardening: The immediate neutralization of unpatched vulnerabilities in
legacy OS versions through network isolation and Azure-native threat protection.

●​ Operational Resilience: The transition from fragile, manual disaster recovery
processes to automated, geo-redundant solutions via Azure Site Recovery.

AzureCloud.pro | Page 3

https://azurecloud.pro/

●​ Cost Optimization: The realization of up to 80% reduction in run costs through
the strategic application of Azure Hybrid Benefit and Reserved Instances,
converting "sunk cost" legacy licenses into cloud currency.

●​ Future-Readiness: The unlocking of data siloed in legacy SQL instances, making
it accessible to Azure Synapse and AI services for advanced analytics.

Strategic Framework and Business
Justification
The Cloud Adoption Framework (CAF) as a Governance
Model

The complexity of migrating legacy estates—often characterized by accumulated
technical debt, undocumented dependencies, and "tribal knowledge"—demands a
structured governance model. The Microsoft Cloud Adoption Framework (CAF) serves
as the scaffolding for this roadmap, ensuring that technical execution remains tightly
coupled with business objectives.

The CAF segments the journey into iterative phases: Strategy, Plan, Ready, Adopt,
Govern, and Manage. For legacy migrations, the Strategy phase is critical in defining
the "trigger" for migration. Common triggers include data center lease expirations,
urgent hardware refresh cycles, or the immediate security threat of unsupported
software. This report assumes a composite motivation: the urgent need to exit an aging
data center while simultaneously mitigating the security risks of EOS software.

Rationalizing the Digital Estate: The 6 Rs of Migration

A core component of the strategic phase is the rationalization of the digital estate. Not
every application warrants the same treatment. We employ the "6 Rs" framework to
categorize workloads based on their technical state and business value.

Rehost (Lift and Shift):

This strategy involves moving the application and its underlying operating system to

AzureCloud.pro | Page 4

https://azurecloud.pro/

Azure Infrastructure-as-a-Service (IaaS) with no code changes. It is the primary vehicle
for "Datacenter Exit" scenarios. For legacy Windows Server 2008 R2 workload,
Rehosting is often the only viable short-term option to maintain application stability while
gaining access to free Extended Security Updates (ESU) in Azure. This strategy
minimizes migration risk but retains the operational burden of OS management.

Replatform (Lift and Tinker):

Replatforming offers a "sweet spot" for legacy modernization. It involves moving the
application to a managed Platform-as-a-Service (PaaS) environment with minimal code
changes. The prime candidate for this is the database layer; migrating SQL Server
on-premises to Azure SQL Managed Instance (SQL MI) removes the need to patch the
OS or manage backups, while retaining near-100% compatibility with the legacy SQL
engine. Similarly, moving ASP.NET web applications to Azure App Service (potentially
via Windows Containers) eliminates IIS management overhead.

Refactor (Repackage):

Refactoring requires altering the application code to better fit the cloud model. For
monolithic.NET applications, this might involve stripping out session state handling from
the web server memory and offloading it to Azure Redis Cache, thereby enabling the
application to scale horizontally across multiple instances. This strategy incurs higher
initial effort but yields significant long-term agility and performance benefits.

Retire and Replace:

An exhaustive discovery process often reveals "Zombie" servers—systems that are
running but no longer serve business value. These must be Retired. Conversely,
commoditized workloads like email (Exchange) or document management (SharePoint)
should be Replaced with SaaS equivalents like Microsoft 365, rather than migrated to
Azure IaaS.

Financial Strategy: The FinOps Imperative

Migrating legacy applications presents a unique financial challenge: the Cost Inversion
Paradox. On-premises, an idle legacy server is perceived as "free" because the capital
expenditure was made years ago. In the cloud, an idle server incurs the same hourly
cost as a productive one. Therefore, the migration strategy must include a rigorous

AzureCloud.pro | Page 5

https://azurecloud.pro/

financial operations (FinOps) component.

The roadmap leverages two potent financial levers to neutralize the "cloud premium":

1.​ Azure Hybrid Benefit (AHB): This mechanism allows the organization to apply
existing on-premises Windows Server and SQL Server licenses (with Software
Assurance) to Azure resources. This effectively removes the cost of the software
from the hourly cloud rate, resulting in savings of up to 40%.

2.​ Reserved Instances (RI): Legacy applications are typically "always-on" and do
not benefit from the auto-scaling elasticity of cloud-native apps. By committing to
a 1-year or 3-year reservation for the underlying compute capacity, the
organization can secure discounts of up to 72% compared to Pay-As-You-Go
pricing.

Discovery and Assessment: Illuminating
the Legacy Estate
The success of a migration is mathematically proportional to the accuracy of the
discovery phase. Legacy environments are often fraught with "unknown
unknowns"—undocumented integrations, hard-coded IP addresses, and forgotten
scheduled tasks. A superficial inventory will lead to migration failures. This roadmap
mandates a deep, data-driven assessment phase using automated tooling.

The Azure Migrate Ecosystem

Azure Migrate serves as the central hub for this phase. It operates by deploying a
lightweight appliance—a dedicated Windows Server VM—onto the on-premises
virtualization hosts (VMware vSphere or Hyper-V). This appliance acts as a passive
listener, collecting metadata about the environment without requiring agents to be
installed on every target server.

Continuous Discovery and Performance Profiling:

Unlike a static spreadsheet inventory, the Azure Migrate appliance performs continuous
discovery. It captures granular performance counters—CPU utilization, memory churn,

AzureCloud.pro | Page 6

https://azurecloud.pro/

disk IOPS, and network throughput—over a period of weeks. This longitudinal data is
critical for Right-Sizing. Legacy on-premises VMs are notoriously over-provisioned (e.g.,
8 vCPUs assigned but only 5% utilized). Azure Migrate analyzes this data to
recommend an Azure VM SKU that matches actual demand rather than allocated
capacity, often resulting in immediate cost reduction upon migration.

Dependency Visualization and Service Mapping

The most significant risk in migrating legacy monolithic applications is breaking
dependencies. A legacy application often consists of a web front-end, a processing
middle-tier, a database backend, and potentially several peripheral integrations (e.g., a
file server for PDF generation, an SMTP relay for emails). If these components are not
migrated together, latency or firewall blocks can cause the application to fail.

To mitigate this, we employ the Service Map feature (now integrated into Azure
Monitor/Azure Migrate). By installing the dependency agent on critical servers, the tool
builds a real-time topology map of TCP connections. It visualizes exactly which
processes are communicating with which IP addresses on which ports. This enables the
creation of high-fidelity "Move Groups"—logical collections of servers that must be
migrated simultaneously to preserve application integrity.

Database Assessment with DMA

For the data layer, the Data Migration Assistant (DMA) provides a specialized deep-dive
assessment. It scans on-premises SQL Server instances to identify "migration
blockers"—features used in the legacy database that might not be supported in the
target Azure version. For example, it will flag the use of deprecated stored procedures,
cross-database queries (which are supported in Managed Instance but not Single
Database), or specific trace flags. The DMA produces a comprehensive report detailing
compatibility issues and offering remediation steps, allowing the engineering team to fix
schema issues before the migration window opens.

Architectural Design: The Azure Landing

AzureCloud.pro | Page 7

https://azurecloud.pro/

Zone
Before a single byte of data is migrated, the destination environment—the Azure
Landing Zone—must be architected and deployed. This infrastructure foundation
provides the plumbing for networking, identity, security, and governance. For legacy
migrations, we adopt the Enterprise-Scale Hub-and-Spoke network topology, which
balances isolation with centralized management.

Network Topology: Hub-and-Spoke

The Hub-and-Spoke model prevents the "sprawl" of unmanaged resources.

●​ The Hub VNet: This is the central point of connectivity. It hosts shared services
consumed by all workloads, including the ExpressRoute Gateway for
on-premises connectivity, the Azure Firewall for traffic inspection, and shared
Identity servers (Domain Controllers).

●​ The Spoke VNets: These host the actual application workloads. Each legacy
environment (e.g., Production, UAT, Dev) is placed in its own Spoke VNet.

●​ VNet Peering: Spokes are peered to the Hub, allowing workloads to access the
shared services. Crucially, spokes are not peered with each other by default,
providing a strong isolation boundary that limits the "blast radius" of a security
breach.

Hybrid Connectivity: The Case for ExpressRoute

For legacy applications, network latency and stability are paramount. Many older
applications were designed for Local Area Networks (LANs) with sub-millisecond
latency and are "chatty"—making hundreds of sequential database calls to render a
single screen.

ExpressRoute vs. VPN:

While a VPN Gateway is cheaper and faster to deploy, it operates over the public
internet, subjecting traffic to unpredictable latency and jitter. For mission-critical legacy
workloads, ExpressRoute is the recommended connectivity standard. It provides a
private, dedicated circuit between the on-premises datacenter and Azure, with SLAs up
to 99.95% availability.

AzureCloud.pro | Page 8

https://azurecloud.pro/

ExpressRoute FastPath:

To further mitigate latency for data-intensive applications, we enable ExpressRoute
FastPath. In a standard configuration, traffic flows from the ExpressRoute circuit to the
Gateway, and then to the VM. FastPath allows traffic to bypass the Gateway and flow
directly to the VM in the VNet, reducing the number of network hops and improving data
path performance significantly.

Identity Management Strategy

Identity is the new security perimeter. Most legacy applications rely on Windows
Authentication (Kerberos/NTLM) and are tightly coupled to Active Directory Domain
Services (AD DS).

●​ Hybrid Identity Sync: We implement Microsoft Entra Connect to synchronize
on-premises AD identities to Microsoft Entra ID (formerly Azure AD). This
ensures that users can access both legacy apps (via Kerberos) and modern
cloud apps (via OIDC/SAML) with a single identity.

●​ Cloud Domain Controllers: To ensure authentication performance, we extend the
on-premises Active Directory forest into Azure by deploying Read-Write Domain
Controllers (RWDCs) in the Hub VNet. This prevents authentication traffic from
traversing the WAN link back to on-premises, which could introduce login delays
or failures if the link is congested.

Migration Strategy: Compute and
Infrastructure
The migration of compute resources—primarily Windows Server VMs—is the heavy
lifting of the project. For legacy systems where source code is lost or the installation
media is unavailable, the Rehost strategy using Azure Site Recovery (ASR) is the only
viable path.

The Rehost Workflow (Lift and Shift)

AzureCloud.pro | Page 9

https://azurecloud.pro/

The Azure Migrate: Server Migration tool orchestrates this process. It functions as a
replication engine, mirroring the on-premises server's disk state to Azure.

1.​ Replication Enablement: The Mobility Service agent is installed on the source
VM. It intercepts disk writes and forwards them to a cache storage account in
Azure.

2.​ Initial Seeding: The entire contents of the disk are replicated. This can take days
for large servers, but does not impact the running application.

3.​ Delta Sync: Once seeded, the tool continuously replicates incremental changes.
The Recovery Point Objective (RPO) is typically in the range of seconds to
minutes.

4.​ Test Migration: This is a critical risk mitigation step. The tool creates a "Test" VM
in a sandboxed Azure VNet using the replicated data. This allows the
engineering team to boot the server in Azure, verify application functionality, and
check performance without disrupting the live on-premises production system.

Handling Legacy OS Nuances (Windows Server 2008 R2)

Migrating Windows Server 2008 R2 presents specific technical challenges.

●​ Agent Pre-requisites: The Azure VM Agent—required for extensions like Backup
and Monitoring—requires specific SHA-2 code signing support patches
(KB4474419) to be installed on the source OS before migration.

●​ 32-bit vs. 64-bit: Azure supports 32-bit Windows operating systems, but many
modern VM families (like the D_v3 series) are 64-bit only. The target VM size
must be carefully selected to support legacy architectures.

●​ UEFI Conversion: Legacy on-prem VMs are often Generation 1 (BIOS). Modern
Azure security features like Trusted Launch require Generation 2 (UEFI). Azure
Migrate provides an automated conversion capability during the migration
process, transforming the boot partition from MBR to GPT seamlessly.

Optimizing Latency: Proximity Placement Groups

Multi-tier legacy applications (e.g., a Web Server talking to an App Server talking to a
SQL Server) were often deployed on the same physical rack on-premises to minimize
latency. In the cloud, "East US" is a massive region comprising multiple datacenters. If
the Web VM lands in Datacenter A and the SQL VM lands in Datacenter B, the latency

AzureCloud.pro | Page 10

https://azurecloud.pro/

could spike to 1-2ms, potentially causing application timeouts.

To replicate the on-premises locality, we utilize Proximity Placement Groups (PPG). A
PPG is a logical grouping constraint that forces Azure to provision the designated VMs
within the same physical datacenter (or even the same hardware cluster). This ensures
that the network latency between the tiers remains at the absolute physical minimum,
preserving the performance characteristics required by the legacy code.

Migration Strategy: Database
Modernization
Data is the gravity of the enterprise. Migrating the database layer offers the highest ROI
for modernization. Moving from a self-managed SQL Server VM to a managed service
drastically reduces operational overhead.

The Target: Azure SQL Managed Instance (SQL MI)

For legacy SQL Server 2008/2012 migration, Azure SQL Managed Instance is the
preferred target over Azure SQL Database.

●​ Instance-Level Compatibility: SQL MI provides an entire SQL instance, not just a
database. This means it supports instance-level features that legacy apps rely
on, such as SQL Server Agent jobs, Service Broker, CLR assemblies, and
Cross-Database Queries. Migrating to the single Azure SQL Database service
would require refactoring these features, adding significant risk and time.

●​ VNet Injection: Unlike SQL Database (which defaults to a public endpoint), SQL
MI is deployed strictly within a private VNet subnet. This mirrors the security
posture of an on-premises database server, accessible only by the application
tier via private IP.

The Migration Mechanism: Database Migration Service
(DMS)

To minimize downtime, we utilize the Azure Database Migration Service (DMS) in its

AzureCloud.pro | Page 11

https://azurecloud.pro/

Premium tier, which supports online migration.

1.​ Backup and Restore: The process begins by taking a full backup of the
on-premises database and restoring it to the SQL MI target (often facilitated via
an Azure Storage Blob or SMB share).

2.​ Log Shipping: DMS then sets up a continuous synchronization process. It reads
the transaction logs from the on-premises active database and applies them to
the Azure instance in near real-time.

3.​ Cutover: When the application is ready to be moved, the on-premises system is
placed in read-only mode. DMS applies the final "tail of the log," ensuring zero
data loss. The application connection strings are then updated to point to the new
SQL MI endpoint.

Ensuring Compatibility: The "100" Level

A common fear is that moving a 15-year-old database to a modern cloud platform will
break queries due to changes in the SQL cardinality estimator. SQL MI addresses this
via Compatibility Levels. We can migrate a database to the latest SQL MI version but
forcefully set the compatibility level to "100" (SQL Server 2008). This instructs the
database engine to use the legacy query optimizer behaviors, ensuring that
performance and query plans remain consistent with the on-premises experience.

Migration Strategy: Application
Modernization (.NET)
For the application tier—specifically ASP.NET Web Forms or MVC applications running
on IIS—the goal is to move away from managing Windows Server VMs (Rehost) and
towards the Azure App Service (Replatform).

Assessing for PaaS Readiness

Not all legacy web apps are ready for PaaS. The App Service Migration Assistant tool is
used to scan the application. It looks for blockers such as:

AzureCloud.pro | Page 12

https://azurecloud.pro/

●​ GAC Dependencies: Legacy apps often rely on DLLs installed in the Global
Assembly Cache (GAC) of the server. App Service does not allow GAC access.

●​ COM+ Components: Usage of legacy COM/DCOM objects is not supported in
the standard App Service sandbox.

●​ Local File System Usage: Apps that write user uploads to
C:\Inetpub\wwwroot\uploads will fail in the cloud because the local disk is
ephemeral and not shared across scale-out instances.

Remediation Patterns

●​ Azure Files: For local file system dependencies, we can mount an Azure Files
share as a local drive letter within the App Service. This allows the legacy code
to continue reading/writing files using standard I/O calls, while the data is actually
stored in a durable, shared storage account.

●​ App Service for Containers: If the application has deep OS dependencies (like
GAC or COM+), the Replatform strategy shifts to Windows Containers. We
package the legacy application, along with its specific IIS configuration and
dependencies, into a Docker container. This container is then deployed to Azure
App Service. This provides the isolation and OS-environment the app needs,
while still offering the PaaS benefits of autoscaling and managed infrastructure.

Decoupling Session State

Monolithic legacy apps often use "In-Proc" session state, storing user session data in
the memory of the web server. This prevents the application from scaling out, as a
user's session is tied to a single server. The modernization step involves refactoring the
web.config to use the ASP.NET Session State Provider for Azure Redis Cache. This
externalizes the session state to a super-fast, managed cache service. The application
becomes stateless, allowing the Azure App Service to auto-scale from 1 instance to 10
instances based on traffic load, without losing user sessions.

Governance and Operational Excellence
Migrating to the cloud without upgrading operational practices is a recipe for failure. The

AzureCloud.pro | Page 13

https://azurecloud.pro/

"Manage" phase of the CAF dictates that we must replace legacy on-premises tools
with cloud-native equivalents.

Monitoring: The Transition to Azure Monitor Agent (AMA)

Legacy environments typically rely on System Center Operations Manager (SCOM) or
the Microsoft Monitoring Agent (MMA). With the deprecation of the MMA (Log Analytics
Agent) in August 2024, the migration roadmap must standardize on the Azure Monitor
Agent (AMA).

●​ Legacy Support: Crucially, the AMA supports Windows Server 2008 R2 SP1
(provided ESU is enabled), ensuring that even the oldest assets in the estate can
be monitored.

●​ Data Collection Rules (DCR): The AMA operates on DCRs, which allow for
granular definition of what data to collect. We create specific DCRs to capture the
Event Logs (System, Security, Application) and Performance Counters (Disk
Queue Length, CPU %, Memory Available) that are relevant to the health of the
legacy application.

Patch Management: Azure Update Manager

Patching is the single most critical maintenance task. Azure Update Manager provides a
unified SaaS solution for patch compliance. It replaces WSUS and SCCM for the cloud
estate.

●​ Automation: We define maintenance windows (e.g., "3rd Saturday of the month,
2 AM") and associate dynamic scopes of VMs (e.g., "All VMs tagged
'Production'").

●​ Hybrid Reach: Through Azure Arc, Update Manager can also orchestrate the
patching of any servers that remain on-premises, providing a single pane of glass
for compliance across the hybrid estate.

Policy-Driven Governance

To prevent the recurrence of the "configuration drift" that plagued the on-premises
environment, we implement Azure Policy. Policies are "guardrails" that enforce rules at

AzureCloud.pro | Page 14

https://azurecloud.pro/

the subscription level.

●​ Cost Control Policies: Restrict the creation of expensive resource types (e.g.,
prohibiting G-Series VMs) to prevent accidental budget blowouts.

●​ Data Sovereignty: Restrict resource deployment to specific Azure Regions (e.g.,
"West Europe Only") to ensure compliance with GDPR or other regulatory
frameworks.

●​ Tagging Enforcement: Require specific tags (Cost Center, Owner, Environment)
on all resources. Resources without these tags are blocked from deployment,
ensuring that the FinOps team can accurately attribute 100% of the cloud spend.

Implementation Roadmap and Timeline
The migration execution is structured into a phased timeline to manage risk and
resource capacity.

Phase 1: Foundation and Discovery (Weeks 1-6)

●​ Objective: Establish the Azure Landing Zone and map the on-premises estate.
●​ Key Activities:

○​ Deploy Hub-and-Spoke network topology.
○​ Provision ExpressRoute circuit and verify bandwidth.
○​ Deploy Identity infrastructure (Entra Connect, Cloud DCs).
○​ Install Azure Migrate Appliance and run continuous discovery for 30 days

to capture month-end peaks.
○​ Run DMA assessments on all SQL Servers.

Phase 2: Pilot Migration (Weeks 7-10)

●​ Objective: Validate the migration toolchain and operational processes.
●​ Target: Non-critical, standalone workloads (e.g., Development environments,

internal tools).
●​ Key Activities:

○​ Rehost 5-10 VMs using Azure Site Recovery.
○​ Replatform 1 SQL Database to SQL MI.

AzureCloud.pro | Page 15

https://azurecloud.pro/

○​ Conduct User Acceptance Testing (UAT) to verify performance and
connectivity.

○​ Refine sizing recommendations based on Pilot performance.

Phase 3: Core Migration Waves (Months 3-9)

●​ Objective: Bulk migration of production workloads.
●​ Strategy: Group applications by "Move Groups" identified in Service Map.
●​ Wave 1 (Low Complexity): Simple 2-tier.NET apps, File Servers, Print Servers.
●​ Wave 2 (Medium Complexity): N-tier applications requiring Proximity Placement

Groups; Clustered SQL Servers moving to SQL MI.
●​ Wave 3 (High Complexity): Mission-critical legacy transaction systems;

Applications with complex external dependencies.
●​ Cutover Rhythm: Migrations are executed in 2-week sprints. Week 1 is for

replication and test failover. Week 2 is for final sync and weekend cutover.

Phase 4: Optimization and Modernization (Months 10+)

●​ Objective: Reduce costs and deepen modernization.
●​ Key Activities:

○​ Right-Sizing: Review Azure Advisor recommendations after 30 days of
production data. Downsize VMs that are running under 20% utilization.

○​ RI Purchase: Once sizing is stabilized, purchase 3-year Reserved
Instances for the compute baseline.

○​ Refactoring: Begin the project to decompose the largest monolithic apps
into microservices or Azure Functions, allowing for the eventual retirement
of the IaaS VMs.

Conclusion
The migration of legacy applications to Microsoft Azure is a complex but necessary
evolution. It requires a departure from the "server-hugging" mentality of the past
towards a service-oriented, data-driven operational model. By adopting the "Stabilize,
then Modernize" strategy—anchored by the Cloud Adoption Framework and powered
by sophisticated tooling like Azure Migrate and SQL Managed Instance—organizations
can navigate the risks of legacy technical debt. This roadmap provides not just a path to

AzureCloud.pro | Page 16

https://azurecloud.pro/

the cloud, but a bridge to the future, transforming aging liabilities into agile, secure, and
cost-efficient assets that will drive the next decade of business innovation.

Table 1: Migration Strategy Selection Matrix

Legacy
Component

Recommended
Strategy

Target Azure
Service

Rationale

Windows
Server 2008
R2

Rehost Azure VM Immediate access to
free Extended Security
Updates (ESU); lowest
migration friction.

SQL Server
2008 / 2012

Replatform Azure SQL
Managed
Instance

Removes OS
management
overhead; retains full
SQL surface area
compatibility (Agent,
CLR).

ASP.NET
Web Forms
(IIS)

Replatform Azure App
Service

Managed patching and
autoscaling; utilize
Windows Containers
for deep dependencies.

File Servers Replatform Azure Files Fully managed SMB
shares; eliminates
need for file server
VMs; integrates with
AD auth.

Active
Directory

Extend Azure VM
(RWDC)

extend on-prem forest
to cloud for low-latency
auth; do not migrate
existing DCs, build new
ones.

AzureCloud.pro | Page 17

https://azurecloud.pro/

Batch
Processing

Refactor Azure
Functions

Convert scheduled
tasks/scripts to
serverless functions to
save costs (pay per
execution).

AzureCloud.pro | Page 18

https://azurecloud.pro/

	Azure Migrate Roadmap
	
	Executive Summary
	

	Strategic Implementation Roadmap and Technical Architecture for Migrating Legacy Applications to Microsoft Azure
	Strategic Framework and Business Justification
	The Cloud Adoption Framework (CAF) as a Governance Model
	Rationalizing the Digital Estate: The 6 Rs of Migration
	Financial Strategy: The FinOps Imperative

	Discovery and Assessment: Illuminating the Legacy Estate
	The Azure Migrate Ecosystem
	Dependency Visualization and Service Mapping
	Database Assessment with DMA

	Architectural Design: The Azure Landing Zone
	Network Topology: Hub-and-Spoke
	Hybrid Connectivity: The Case for ExpressRoute
	Identity Management Strategy

	Migration Strategy: Compute and Infrastructure
	The Rehost Workflow (Lift and Shift)
	Handling Legacy OS Nuances (Windows Server 2008 R2)
	Optimizing Latency: Proximity Placement Groups

	Migration Strategy: Database Modernization
	The Target: Azure SQL Managed Instance (SQL MI)
	The Migration Mechanism: Database Migration Service (DMS)
	Ensuring Compatibility: The "100" Level

	Migration Strategy: Application Modernization (.NET)
	Assessing for PaaS Readiness
	Remediation Patterns
	Decoupling Session State

	Governance and Operational Excellence
	Monitoring: The Transition to Azure Monitor Agent (AMA)
	Patch Management: Azure Update Manager
	Policy-Driven Governance

	Implementation Roadmap and Timeline
	Phase 1: Foundation and Discovery (Weeks 1-6)
	Phase 2: Pilot Migration (Weeks 7-10)
	Phase 3: Core Migration Waves (Months 3-9)
	Phase 4: Optimization and Modernization (Months 10+)

	Conclusion

